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Phase-fixed double-group 3-U symbols. VI. Real 3-U 
symbols and coupling coefficients for the group hierarchy 
I *  ~ C *  

Ture Damhus*, Sven E. Harnnng, and Claus E. Schiiffer 

Chemistry Department I, H. C. ~rsted Institute, University of Copenhagen, Universitetsparken 5, 
DK-2100 Copenhagen 0, Denmark 

It is demonstrated that for the group-subgroup hierarchy I* ~ C*, one may 
choose standard irreducible matrix representations and corresponding all-real 
sets of 3-F symbols which obey a formalism just as elegant as the classical one 
for the 3-j symbols of the rotation double group. The 3-F symbols are 
phase-fixed by the specification of basis functions (or, equivalently, subduction 
coefficients) generating them and based on functions first given by McLellan. 

Other icosahedral double-group hierarchies are also briefly discussed. 

Key words: Icosahedral double group - -  real phase-fixed three-gamma symbols 
and coupling coefficients - -  standard irreducible matrix representations - -  
complex conjugation of matrix representations by inner automorphism. 

1. Introduction 

The present paper, by discussing the icosahedral double group, completes a series 
of papers of which the two first ones dealt with 3-F symbols and coupling 
coefficients in general [1] and with such quantities for double groups in particular 
[2], while the following papers [3-5] discussed 3-F symbols for the dihedral, 
tetrahedral, and octahedral double groups, respectively. For terminology and 
notation not explained here we refer to [1] and [2]. 

* Present address: Department of Pharmaceutical Chemistry AD, Royal Danish School of Pharmacy, 
Universitetsparken 2, DK-2100 Copenhagen 0, Denmark. 
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At the present time, so many applications or potential applications of  the icosahe- 
dral group I and its double group I*  are known [6; 7; 8, Refs. given on p. 1059; 
9, Introduction;  10] that it is clearly of  interest to investigate the possibilities of  
establishing smoothly working Wigner-Racah algebras for these groups. Besides, 
the icosahedral groups present some intriguing problems with respect to subgroup 
adaption (like did the octahedral doflble group [5]) and the unique feature of  a 
triple multiplicity (the triple WVW, see below). 

Although the icosahedral groups have been known to mathematicians for more 
than a century (e.g:, Hamil ton 1856, cited in [11], p. 67; Klein's  1884 lectures 
[12]; the character table of  I*,  Frobenius 1899 [13]; see also the bibliography 
[14]), the d e t a i l e d  representation theory has been worked out only in the last 
decades, chiefly by physicists and chemists. Several authors [8, 15-19] have dealt 
with i c o s a h e d r a l  i n v a r i a n t s ,  i.e. bases in various specified spaces for the totally 
symmetric irrep o f / .  However, the task of  furnishing physically suitable concrete 
realizations of  a l l  the irreps of  I (and I*)  was undertaken first by Cohan [20] 
and, independently,  by McLellan [6] and was later attacked from a different point 
of  view by Boyle and O2go [21]. The spherical harmonic approach to icosahedral 
reps is presented in modern  mathematical  terms in a paper  by Huber  [22], while 
Schmelzer [23] and Ceulemans [24] treat cyclically and otherwise equivalent bases 
generating icosahedral irreps. Finally, some recent publications give sets of  
symmetry coefficients for I*  [25, 26] or just I [9, 27]; these will be commented 
upon below in this paper.  

Table 1 gives our present notation for the irreps of  I*  along with some relevant 
rep-theoretical information. 

Table 1. The icosahedral double group a I* 

Frobenius-Schur vector/spin 
Irreps d Dimension classification b classification c 

A = ll*(I'l) 1 
TI(FI, F2) 3 
Tz(F2, F3) 3 
U(G, F4) 4 
V(H, Fs) 5. 
EI(E', E1/2, F6) 2 ~ 
Ez(E", E7/2, I'7) 2 
X(U', G3/2, Fs) 4 
W(W', 15/2, I'9) 6 

first kind vector 

second kind spin 

a Alternative notations for the icosahedral group include P, Y, and K, of which the latter is also 
sometimes used for the rotation group, R3. See the discussion by Boyle [45]. 
b See ([1], Sect. 5.2). 
r ([2], Sect. 2.1). 
a Alternative notations in parentheses collected from other works [6, 9, 21, 25, 27, 28, 29, 36, 44, 45]; 
still another system is found in the quasi-numerical labels used by Butler [26]. See also the discussion 
by Boyle [45]. 
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Table 2. Icosahedral irrep triples. The table displays those irrep triples F1F2F 3 for which F 1 @F2@F 3 
contains A at least once. (Only one of the permuted forms of each unordered triple is given.) The 
number of occurrences of A in F1 |174 3 is given, using - whenever relevant - the labels "s"  and 
"a"  to indicate the symmetry/antisymmetry of the fix-vectors (cf. [1], Sect. 3.2). Thus, for example, 
for WVW we have dim ~-s(WVW)= I and dim ~a(WVW) =2. Note that either two or none of the 
irreps in a triple figuring here are of the second kind ([2], Sect. 2.1) 

A A A  s T1 AT1 s UT2T1 1 
T1 T1 T1 a T1 V T 1 s V T 2 T 1 1 
T2T2T z a T2AT2 s VUTI  1 
U U U  s T2VT 2 s VUT2 1 
VVV 2s U A U  s 

U T~ U a E 2 E 1 U 1 
UTzU a XE1T I 1 
U V U  s X E I V  1 
V A V  s X E 2 T  2 1 
VT 1 V a X E 2 V 1 
VT2V a WEx T2 1 
V U V  s + a  W E t U  1 

WE1V 1 
W E 2 T 1 I 
WEeU 1 
WE2V l 
W X T  I 1 
W X T  2 1 
W X U  2 
W X V  2 

Et A Et a 
E 1 T l E I s 
E 2 A E 2 a 
E 2 T z E 2 s 
X A X  a 
XT1X s 
XT2X s 
X U X  s 
X V X  a 
W A W  a 
W T 1 W 2s 
WT 2 W 2s 
W U W  s + a  

W V W  s + 2 a  

2. The icosahedral irrep triples; primary and supplementary j-values 

T a b l e  2 g ives  a l i s t i ng  o f  t h o s e  i r r e p  t r i p l e s  FIF2F3 o f  I *  f o r  w h i c h  F I | 1 7 4  

c o n t a i n s  t h e  t o t a l l y  s y m m e t r i c  i r r e p  A - - l t *  a t  l eas t  o n c e ,  i.e. fo r  w h i c h  

d i m  o%(FIF2F3) > 0 (cf.  [1], Sect .  3.1). T h e  t a b l e  is d e r i v a b l e  b y  s t a n d a r d  a r g u m e n t s  

([1], Sect .  A.1)  f r o m  t h e  c h a r a c t e r  t a b l e  a n d  m a y  b e  a s s i m i l a t e d  f r o m  e x i s t i n g  

t a b l e s  (see [28], A p p .  2 or ,  f o r  t h e  t r i p l e s  F F F ,  [29]).  

I n  T a b l e  3a  we  h a v e  r e p r o d u c e d  s o m e  r e l e v a n t  s u b d u c t i o n  r e l a t i o n s  fo r  R *  ~ I* .  

T h e  p r o c e d u r e  d e s c r i b e d  in  ([2],  Sect .  4) l e a d s  us  to  a s s i g n  to t h e  i c o s a h e d r a l  

i r r e p s  c e r t a i n  i r r e p s  o f  R *  (i.e.,  j - v a l u e s )  in  t h e  w a y  s h o w n  in  T a b l e  3b. 

T h e  p e r m u t a t i o n a l  s y m m e t r y  o f  t h e  t r i p l e  U U U  a n d  t h e  m u l t i p l i c i t i e s  a s s o c i a t e d  

w i t h  t h e  t r i p l e s  VVV,  V U V ,  W T l W ,  W T 2 W ,  W U W ,  W V W ,  X U W ,  a n d  X V W  

n e c e s s i t a t e  t h e  a s s i g n m e n t  o f  t w o  j - v a l u e s  to  T~, T2, a n d  U a n d  t h r e e  j - v a l u e s  to  

V. 
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Table 3 

@ Subduction relations (~) j-value assigned to 
R* ~ I* irreps of I* 

D o r A  A 0 
D1/z~EI  T 1 1 (primary), 5 
D I ~ T  1 T 2 3 (primary), 5 
D3/2-~X U 3 (primary), 4 
D 2~ V V 2 (primary), 4, 5 
Ds/2 ~ W E1 �89 
D3~ U O T  2 E2 7 
D7/2~ W ~ E 2  X 
D4~V| W 
D 5 ~ VO T 1 G T2 

See main text, Sect. 2. For a partial continuation of  Table 3a, see [36] 

As pointed out in ([2], Sect. 4.3), it is necessary to check that transformed 3-j 
symbols generated by basis functions corresponding to our primary and supple- 
mentary j-values actually may be renormalized to give subgroup 3-F symbols by 
([2], Eq. (4.3.6)). 

For all multiplicity triples discussed here, the remarks of ([2], Sect. 4.6) show 
that using the primary and supplementary j-values of Table 3b leads to mutually 
orthogonal sets of triple coefficients. E.g., the transformed 3-j symbols 

3 a .d  4 
X ' y  I U')/2 W')/3,] kX~/1 U ' y  2 W'y3,]  

form mutually orthogonal non-vanishing sets which are, consequently, used for 
the construction of two mutually orthogonal sets of 3-F symbols of the type 
(XUW/ylyzy3), one odd ( 3 / 2 + 3 + 5 / 2  is odd) and one even ( 3 / 2 + 4 + 5 / 2  is 
even), cf. [2, Eq. (4.3.7)]. Similar remarks apply to the triples WTIW, WT2W, 
WUW, WVW, and XVW, and for these six triples there are no further problems. 
Note that for the triple WVW with multiplicity three, we get two sets of odd 3-F 
symbols and one set of even 3-F symbols. 

For the triple UUU, there is a problem similar to (but in a way simpler than) 
the one we met in connection with the triples EaEaE~, A = n/3, in the dihedral 
double groups D* with n equal to a multiple of 3 ([3], Sect. 4). The transformed 
3-j symbols 

Uyz UT2 Uy3 

make up a simultaneously symmetric and antisymmetric fix-vector for UUU ([1], 
Sect. 3.2) and thus vanish. (Thus we have an instance of "conflicting symmetries" 
[30].) Instead, the 3-F symbols (UUU/Yl Y2Y3) are constructed from transformed 
3-j symbols of the form (343/Uy~Uy2Uy3), and it may further be checked that 
the secondary j-value j = 4 may just as well be chosen in the first or third position. 
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Table 4. Triples of j-values used in the construction of 3-F 
symbols for I*-irrep triples necessitating the use of supplemen- 
tary j-values 

I*-irrep triple j-value triple 

U U U 334 
V V V 222, 224 
V U V 232, 242 
WTtW 515 S 5 ~-,~5 
WT2W 53 s 5 ~,g5 
W U W  ~35 5 5 g, g4g 

5 5 5  5 5  WVW y2~,~4~,55~- 
W X U  5 3  5 3  ~i3, g54 
W X V  53 s3 

437 

Finally, the triple VVV has dim ~-s = 2, and the j-triples 222 and 224 yield mutually 
orhogonal, symmetric fix-vectors; it may be shown to be immaterial where the 
j = 4 is placed. 

[If we had not set up the rule of minimum Jl +j2 +J3 ([2], Sect. 4.4), there would 
have been other possibilities for the construction of 3-F symbols for VVV with 
the use of j-values from Table 3b. The triple pairs 442, 444 and 552, 554 both 
give an orthogonal set of VVV fix-vectors; however, each of  these four fix-vectors 
is a linear combination with complicated coefficients of both of the two fix-vectors 
derived from 222 and 224. In particular, one cannot use 444 together with 222 
if one wants an orthogonal pair, even though this would have been attractive 
because one could have skipped the argument concerning the position of the 
secondary j-value. Cf. discussion of the tetrahedral triple T I T  ([4], Sect. 3). 

Butler's separations of the multiplicities in I* [26] are, in general, not necessarily 
the same as ours. They do not seem to be explicitly specified in [26], but in 
principle the tables there enable a retrieval of"3- jm factors" and thus information 
equivalent to the coefficients in linear combinations like the ones just discussed 
for VVV.] 

Table 4 summarizes the j-triples thus selected for the /*- t r ip les  involving irreps 
necessitating supplementary j-values. For all other triples, 3-F symbols are con- 
structed by using only primary j-values. 

3. Basis functions and 3-U symbols adapted to I*  ~ C* 

3.1. Choice of a generating set for the icosahedral double group 

There are many ways to choose a set of generators and relations between them 
so that they define the group I*, i.e. the group has many presentations, ([11, 14]; 
[31], Chap. 11), some of which are highly symmetrical [32] (although maybe not 
suited for all specific practical purposes [33]). Here we shall choose the rotation 
C5 of 2~r/5 around the Z axis and the two-fold rotation C2 with axis in the 
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Z, C 5 

C2 C3 

C2 

Fig. 1. A regular icosahedron placed in a Cartesian coordin- 
ate system in such a way that the Z axis is a five-fold 
symmetry axis and the Y axis is a two-fold symmetry axis 
with the positive part intersecting an icosahedron edge 
which forms a A pair (defines a right-hand screw) together 
with the Z axis. As generators for the icosahedral group 
we here choose C 5 and C 2 with the axes shown. These 
generators satisfy C2C 5 = C31, where the three-fold sym- 
metry axis in question is also marked on the figure, and 
thus the relations C55 = C~ = (C2C5) 3 = E, i.e. we have the 
presentation of the icosahedral group given by Bolza and 
discussed by Littlewood [46]. 

Note that the regular icosahedron of course has full sym- 
metry I h = I x $2, whereas we have above only been inter- 
ested in the double group I* of the proper rotation group 
I. The double group Ih* has been defined ([2], Sect. 2.2; [34]). 

X Z - p l a n e  and  d i rec t ion  cosines ax = - 5 - 1 / 4 ( I  9-1 /2 ,  Ofy = 0,  o~ z ~- 5-1 /4( I  ) - 1 / 2  for  its 

axis (where  qb is the  go lden  n u m b e r  (1 + 51/2)/2) as genera tors  o f  the pu re  ro ta t ion  
g roup  I (See Fig. 1); we may  then  choose  the co r r e spond ing  d o u b l e - g r o u p  
e lements  

C*  = ~[1/2J(2~/5,  0, 0) 

and  

C* = ~E1/2J(~., Arccos  (x/1-~), 0) (3.1) 

as gene ra to r s  o f  I* ,  whe reby  I*  is ful ly  specif ied as a g roup  o f  2 x 2  matr ices  (cf. 
[2], Sect. 2 or  [34]). Wi th  this  choice,  the  R* -e l e me n t  

C r * =  ~E1/21(0, ~, 0), (3.2) 

c o r r e s p o n d i n g  to a ro ta t ion  o f  ~r a r o u n d  the Y axis,  a lso becomes  an e lement  

o f  I* .  This  will be  o f  in teres t  to us la ter  on. 

The above  choice  o f  a geomet r i c  se t -up  for  the  i c o s a h e d r o n  will be  mo t iva t ed  in 
the  next  subsec t ion .  

3.2. Bas i s  f u n c t i o n s  and  3-F  symbols  f o r  I *  D C *  

Our  s tar t ing po in t  was the  funct ions  given by  McLe l l an  [6]. Wi th  M c L e l l a n ' s  
choice,  the  Ra*-element C x*- -  ~E1/2j(~., ~, 0), co r r e spond ing  to a ro ta t ion  o f  ~r 
a r o u n d  the X axis,  is an e lement  o f  I* .  Our  first modi f i ca t ion  o f  those  funct ions  
was m a d e  in o rde r  to achieve the " c o n j u g a t i o n  o f  s t a n d a r d  i r reps  by  a fixed 
g roup  e l e m e n t "  s i tua t ion  desc r ibed  in ([1], Sect. 5.5). Thus we had  the s i tua t ion  
that  for  any  s t a n d a r d  mat r ix  i r rep F, the  mat r ix  F ( C  x*) was a con juga t ion  mat r ix  
for  ~" and ,  in par t i cu la r ,  we knew now tha t  a l l - real  sets o f  3-F symbols  cou ld  be 
chosen  c o r r e s p o n d i n g  to our  s t a n d a r d  mat r ix  irreps.  However ,  the  bas is  funct ions  
themse lves  were o f  a less p leas ing  a p p e a r a n c e .  We then  m a d e  use o f  the  observa-  
t ions m a d e  in ([2], Sect. 4.5) and  ro ta ted  the  coord ina t e  sys tem (or,  a l te rna t ive ly  
expressed ,  ro ta ted  the  axes o f  the i cosahed ra l  genera tors  re la t ive ly  to the  coord in -  
ate sys tem) so as to ob ta in  some much  s imple r  basis  funct ions  y ie ld ing  the same 
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matr ix  irreps and t r ans fo rmed  3-j symbols .  N o w  the e lement  C f *  had  the r61e 
former ly  p layed  by C x*. After  some phase  changes made  in accordance  with the 
rules given in ([2], Sect. 4.4), we arr ived at the basis funct ions given in Table  5. 

Our  genera tor  C: is s i tuated with respect  to our  X axis as was McLel lan ' s  " C "  
with respect  to his Y axis. 

[There are, in fact, two geometr ical ly  distinct ways of  choosing a coord ina te  system 
with the Z axis as a five-fold axis in a regular  i cosahedron  and  the Y axis as a 
two-fold  axis o f  the same icosahedron:  that  i cosahedron  edge which  intersects 
the posi t ive par t  o f  the Y axis forms a chiral skew line pair  together  with the Z 
axis and  this may  be either a A pai r  or a A pair  [35]; for  the present  basis 

Table 5. Basis functions for I*~  C~*. The coordinate system used is discussed in Sects. 3.t and 3.2 
of the main text. The basis functions are given in the form ]jFy)=~.~ s(jm, jF3,)ljm) (cf. [2], Eq. 
(4.3.2)), where F denotes an irrep of 1" and 3' a component of F. The functions generate matrix 
irreps of I* with the properties given in Table 6 

Io A o) = Io o) 
1�89 ~ , , 
I~-E~ ~ - '  ~ -~) -I~ - 9  
I1T, +l)=ll  +1) 
I1 T, 0)=l l  O) 
I1T~-1)= 11-1) 

I~ x q )  = I~ q> 

3 1 I~ x -~> = I~ -~) 
123 x -~) = I~ -~> 
12 V +2) = 12 +2) 
12V +1)=}2 +1) 
12 V O) = [2 O) 
12V-1)=12-1)  
12 V -2) = 12 -2) 
5 5 5 h w ~ )  = h q )  
5 3 5 

5 1 5 

5 I 5 l~ w -~) = I~ -�89 
5 3 5 h w - 9  = I~ -~> 
5 ' 5 5 I~ w -~) = I~ -~> 

13 W2 +2) = ~ 13 + 2 ) - ~  13 -3)  
13 I"2 0) = 13 0) 
13 T2 -2)  = ~ 13 +3) + ~  13 -2) 
13 U +2)=~13  +2) + ~ [ 3  -3)  

13 U +1) = 13 1) 
13 U -1) = 13 -1)  
13 U -2) = - ~  13 +3) + ~  13 -2)  

] 7 E2 _3) = _~13o 1~7 ..~)7 +x/'~ 712_g)a 

14 U +2) = -x/~x~ 14 +2) -x /~  14 -3) 
14 U +1) = ~ 14 +1) +x/~ 14 -4) 
14 U -1) = ~ 14 +4)-'f-~l~ 14 -1) 
14 U -2) = -,,/-~ ]4 +3) +,f~lL~ 14 -2) 

14 v +2) = ~ 14 +2) - , /~  14 -3) 
14 V +1) = _~/T [4 +1) +~/~ 14 -4) 

14 V 0) = 14 0) 
14 V -1) = -'f-~l~ 14 +4) -  ~/-~1~ 14 -1) 
14 V -2) = x/~ 14 +3) +~ss 14 -2) 
15T1 +1)=-,/~15 +1)--,/~15 -4) 
15 T, 0) = -4~o 15 +5) -4~  150) +,/~ 15 -S) 
I5T, - l )=f f~ t5  +4) +x~l~ 15 -1) 
15T2 +2)=~15 +2 )+~  15 -3) 
15 T20> = 4~, 15 +5) - 4 ~  150>-4-~, 15 -S) 
15 % -2) = - ~  15 +3> + ~  15 -2) 
15 V +2) = -x/~ 15 +2) +~33-15 -3) 
15 V +1) =-/-~t~ [5 +1)+~/~ 15 -4) 
15 v 0 ) = - 4 1 5  +5)-415 -5) 
15 v -1> = ~ 15 +4>-,/~ t5 - l )  
15 v -2> = ~ 15 +3) + ~  15 -2> 
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functions, it is a A pair. The other possibility would correspond to basis functions 
generally modified by powers of e -i2=/5 when expressed in terms of the Ijm) (cf. 
[2], Sect. 4.5) and thus having much more complicated expressions than the 
present ones. 

The positive part of McLellan's X axis must have intersected an edge forming 
a A pair with the Z axis. 

A similar phenomenon was described by Boyle & Sch~iffer [36] for coordinate 
systems formed by three icosahedral two-fold axes.] 

Some of the properties of the matrix irreps generated by these basis functions 
may be seen in Table 6. It is seen, in particular, that these matrix irreps have the 
"symmetric generator matrices"-property and thus allow real 3-F symbols ([2], 
Sect. 3.2). Indeed, the basis functions in Table 5 are all real linear combinations 
of the Ijm) functions and thus generate real icosahedral 3-F symbols by the 
procedure outlined in ([2], Sect. 4). 

The irreps and 3-F symbols satisfy the relations 

(r  A r,) (dim F)-l/2F( Y* 
3' 0 3' = C2 )~, 

= (dim F)- l /28(-y,  y ' ) ( -  1) F)-v ' .  (3.2.1) 

We recall that the 3-F symbols in (3.2.1) are the elements of the matrices we have 
chosen as conjugating matrices for the standard matrix irreps ([1], Sect. 5). Here 
and in the following j(F) denotes the primary j-value assigned to F in Table 3b. 
Note that we here have a particular example of the general relation ([2], (3.3.1)). 
Some consequences of relations (3.2.1) will now be pointed out. 

Firstly, because of the first equation in (3.2.1), the particularly convenient formal- 
ism of ([1], Sect. 5.5) applies. We recall that this means that all 3-F symbols 
may be chosen real; all Derome-Sharp A matrices ([1], Sect. 5.4) are unit matrices, 
i.e. the formula 

holds generally; and that 8 matrices ([1], Sect. 5.4) are given by 8i(F1F2F3)~e = 
rr(F~AFi)6(a, fl) so that, e.g. 

is generally valid. Furthermore, the conventional relation between coupling 
coefficients and 3-F symbols, discussed in ([1], Sect. 5.3), assumes the simple form 

(rlv,r wl r3w> 

'Y2 "Y3 8" (3.2.4) 
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(In (3.2.3) and (3.2.4), the permutational characteristic (transposition phase) 
~r(FIF2F3]3) is +1 if the 3-F symbols (FiF2F3/'YlYZy3)t3 are even and - 1  if they 
are odd ([1], Sect. 4).) 

Secondly, the fix-vector property of 3-F symbols ([1], Sects. 3 and 4) together 
with the second equation in (3.2.1) leads [2, Sect. 3.5] to the following general 
internal relation between 3-F symbols for a given triple FIF2F3: 

--'~1 --')/2 --')/3 /3 \'Yl ")/2 ')/3 ~" (3.2.5) 

Eqs. (3.2.1) together with ([1], Sects. 5.3.1-5.3.2) show that conjugations are 
generally carried out by the formla 

r ) 
y - y  

Because of the C*-adaption, the 3-F symbols also satisfy ([2], Sect. 3.5) the 
"selection rule" 

(F1 F2 F3)#0~,Yl.~_,y2..~,y3~ 0 (mod5). (3.2.7) 
'Yl "Y2 y3 /3 

Space limitations prevent us from giving a full tabulation of the 3-F symbols 
generated by the basis functions of Table 5. Besides, we actually think that the 
most important thing about the present paper is that we describe how a set of 
3-F symbols with the above properties may be generated (most naturally by a 
computer, maybe even only internally in computer programs when they are to 
be used). Large tables as required here are bound to contain errors (if not 
reproduced directly from the computer-output). However, for illustration pur- 
poses, we give in Table 7 the 3-F symbols just for the triples VVV, XUW, WVW 
(all multiplicity triples; one, three, and two irreps involved, respectively, and 
multiplicities two, two, and three, respectively). The table has been condensed 
by the use of formula (3.2.5); for example, although (XUW/-1 /2  - 2  -5/2)0 is 
not in the table, we find there (XUW/1/2 2 5/2)0, and (3.2.5) then gives 

( 1~ U W )=(_1)3/2+3+5/2_1/2_2_5/2( X U W )  
- 2 - 2 - 5 / 2  o 1/2 2 5 / 2  o 

= ( X  U W )  =,/3-/32. (3.28) 
1/2 2 5/2 o 

We have used here "o"  (for odd) as an abbreviation for "3/2 +3 +5/2".  

[Using more or less the same basis functions as McLellan, Golding [25], K6nig 
and Kremer [27], and Pooler [9] obtained "symmetry coupling coefficients" for 
I*, 3-F symbols for I, and "3-jm symbols" for I, respectively. In all cases, non-real 
(but then purely imaginary) coefficients occur. All three expositions involve 
complicating concepts of either "minus'ing" [25, 37] or "time-reversal" [27, 9]. 
Pooler seems to use j-values much the same way as we have done above, although 
he criticizes the very similar (but disguised) use Golding makes of them. We 
would like to emphasize that these j-values do not introduce any information 
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which is extraneous to the icosahedral Wigner-Racah algebra; they are just a 
convenient way of representing information within that algebra. (Of course the 
reason that they work lies in the relations with the rotation group.) 

The tables of  [25] were checked on a computer by the present authors; some 
errors were found (one is pointed out in [9]).] 

4. Adaption to other subgroup hierarchies 

There is quite a number of icosahedral subgroup hierarchies to which one might 
adapt the icosahedral matrix irreps other than I* ~ C* discussed above. Butler 
[26, 38], Boyle [21, 36, 10], and the present authors [36, 39] have each worked 
with one or several of these. The general impression emerging from these investiga- 
tions is that basis functions and 3-F symbols become much more complicated 
and the whole formalism less elegant than was the case with I* ~ C*. In some 
cases, 3-F symbols cannot all be chosen real. 

We shall now briefly summarize what is known about these other cases. 

4.1. Further pentagonal hierarchies 

It is a rather trivial matter to modify the basis functions of Table 5 so that they 
become adapted to either of the hierarchies I* D D* D C* or I* D D* D C* (cf. 
[3]). For none of these we have been able to avoid non-real 3-F symbols. In fact, 
it has recently been proved [40] that strict adaption to I * D  D* excludes the 
possibility of  having all coupling coefficients real, and this is equivalent to stating 
that not all 3-F symbols can be chosen real (the latter follows from arguments 
given in [41]). 

If one relaxes the requirement of D*-adaptation just for the two third-kind spin 
irreps R1 and R2 (see definition in [3]) and combines them to a reducible 
two-dimensional rep, one may establish basis functions and real 3-F symbols 
obeying a formalism almost as elegant as the one described above for I* D C*. 
Since the results are so similar, they will not be reproduced here, but copies of 
the complete material thus produced are available from the present authors upon 
request. 

4.2. Trigonal hierarchies 

The following trigonal hieraehies may be envisaged: 

I* ~ C* 

I* ~ T* ~ Ca* 
I* ~ D3* D Ca* (4.2.1) 

I* ~ D* D C*. 

It was proved in [40] that strict adaption of matrix irreps to I * ~  D3* or to 
I* = T* makes it impossible to have all coupling coefficients (or all 3-I" symbols) 
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real. In fact, this is not even possible for I z T. For I * D  T*D Ca*, we have 
previously proved [39] that real 3-F symbols did not exist. That proof  was based 
on actual numbers from a trial calculation, whereas the arguments in [40] are of 
a more global group-theoretic nature. 

The hierarchy I*D  T*D Ca* is relevant for the kind of systems discussed in 
[6, 7, 42]. 

We do not at the present time have any results for an adaption to I* ~ Ca* without 
adaption to T* or Da* also. 

4.3. Diagonal and further tetrahedral hierarchies 

The remaining hierarchies terminating with CE* are 

I* D C* 

I* ~ D2* D C* (4.3.1) 

I * D  T*D C* 

I* D T* D DE* D C2". 

For the hierarchies involving T*, a full set of real 3-F symbols does not exist; 
as noted above, this is even true for I D T, the proof  being given in [40]. 

We have constructed some basis functions adapted to I* D DE* D C2" which are 
also almost T*-adapted, their only default in this respect being that the tetrahedral 
third-kind irreps C~, C2, E2, and E3 [4] have been mixed to form a reducible 
two-dimensional r e p E  with a real matrix form equivalent to C~| and a 
reducible 4-dimensional rep with a (non-real) matrix form equivalent to E2(~ E3. 
These basis functions have the conjugation property of ([1], Eq. (4.4.1)) ("irrep 
conjugation by a fixed group element"). Thus real 3-F symbols obeying the 
formalism of ([1], Sect. 5.5) may be chosen and are indeed generated by these 
basis functions. However, many of the 3-F symbols have a very complicated 
algebraic form, e.g. one obtains 

E W T(T*)B3(D*)x)T E, ( T*)E,/2(DE*) 1/2 flEt( T*)EI/2( D*2 ) I/2 

= x/9/256 + x/-5/2-~ - 3/x/~-~ +x/5/768. (4.3.2) 

On the other hand, this hierarchy may be a relevant one for the study of, e.g. 
hexanitrato-rare-earth ions of the form [M(NO3)6] 3- having Th symmetry [42] 
and approximate icosahedral symmetry, so the material may be of interest and 
we hope to finish this work in the near future. 

If we stay with the I * ( ~  T*)D DE* ~ C2*-material just mentioned and restrict 
attention to the vector irreps, we are effectively just studying the icosahedral pure 
rotation group I in an adaption to I (D T) ~ DE D C2. Here the 3-F symbols have 
at most two terms (compare with the four terms in (4.3.2) above), and the basis 
functions may be expressed simply in terms of either the standard real spherical 
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h a r m o n i c s  o r  c u b i c  h a r m o n i c s .  Thus  a r a t h e r  s a t i s f ac to ry  " r e a l  a l g e b r a "  e m e r g e s  

w h i c h  is a c o n t i n u a t i o n  o f  t h e  t r e a t m e n t  o f  t he  c r y s t a l l o g r a p h i c  p o i n t  g r o u p s  

g iven  in [43]. O n e  p o s s i b l e  c h o i c e  o f  i r rep  m a t r i c e s  c o r r e s p o n d i n g  to  this  a d a p -  

t i on  has  b e e n  p u b l i s h e d  in [10], I t  is o u r  i n t e n t i o n  to m a k e  this  m a t e r i a l  the  

sub jec t  o f  a s e p a r a t e  p u b l i c a t i o n .  
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